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Abstract 

A counting polynomial, called Omega Ω(G,x), was proposed by Diudea. It is defined on the ground of “opposite 

edge strips” ops. Theta ( , ) ( , ) .xc
c

G x m G c c   polynomial can also be calculated by ops counting. In this 

paper we compute this counting polynomial and its index for V-phenylenic Planar, Nanotubes and Nanotori.  

 Copyright © acascipub.com, all rights reserved.  
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Introduction 

Mathematical calculations are absolutely necessary to explore important concepts in chemistry. Mathematical 

chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using 

mathematical methods without necessarily referring to quantum mechanics. In chemical graph theory and in 
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mathematical chemistry, a molecular graph or chemical graph is a representation of the structural formula of a 

chemical compound in terms of graph theory. A topological index is a numerical value associated with chemical 

constitution purporting for correlation of chemical structure properties, chemical reactivity or biological activity. 

Let G(V, E) be a connected molecular graph without multiple edges and loops, with the vertex set V(G) and edge set 

E(G), and vertices/atoms x, yV(G). Two edges e=uv and f=xy of G are called codistant (briefly: e co f) if they 

obey the topologically parallel edges relation. For some edges of a connected graph G there are the following 

relations satisfied [1-3]: 

ecoe  

e co f f co e  

hcoehcoffcoe &  

Set ( ) { ( ) | },C e f E G f co e   denoting the set of all co-distant edges in G. If the relation “co” is transitive on 

C(e) then C(e) is called an orthogonal cut “oc” of the graph G. Then G is called a co-graph and E(G) being the 

union of disjoint orthogonal cuts.Let m(G,c) be the number of qoc strips of length c in the graph G. Four counting 

polynomials have been defined [3-25] on the ground of qoc strips: 

( , ) ( , )x
c

cG x m G c   

( )
( , ) ( , )x

E G

c

c
Sd G x m G c


  

( , ) ( , ) .x
c

cG x m G c c   

( )
( , ) ( , ) .x

E G

c

c
G x m G c c


   

The first derivative (computed at x=1) of these counting polynomials provide interesting topological indices:  

'( ,1) ( , ) ( )
c

G m G c c E G     

2'( ,1) ( , )
c

G m G c c    

'( ,1) ( , ) ( ( ) )
c

Sd G m G c E G c    

'( ,1) ( , ) ( ( ) )
c

G m G c c E G c     

The aim of this report is to compute the Theta polynomial and Theta index of V-phenylenic planar, nanotube and 

nanotori. Herein, our notation is standard and taken from the standard book of graph theory [26]. 
 

Results and Discussion 

The structures of V-Phenylenic Planar, Nanotube and V-Phenylenic Nanotorus consist of several C4C6C8 net. A 

C4C6C8 net is a trivalent decoration made by alternating C4, C6 and C8. Phenylenes are polycyclic conjugated 

molecules, composed of four-and six-membered rings such that every four membered ring (= square) is adjacent to 

two six-membered rings (= hexagons) [27-32]. Following M.V. Diudea [33]
 
we denote a V-Phenylenic nanotube and 

V-Phenylenic nanotorus by G=VPHX[m,n] and H=VPHY[m,n], respectively and also denote a V-Phenylenic planar 

by K=VPHP[m,n]. A general representation of thees molecular graph are shown in Figure 1, Figure 2 and Figure 3. 

In Refs [34-47] some topological indices of V-phenylenic nanotube and V-phenylenic nanotori are computed. 
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Theorem 1. Consider the V-Phenylenic Planar K=VPHP[m,n] ( , ),m n   the Theta polynomial of VPHP[m,n] 

is calculated by formulas: 

   m≥n, Θ(VPHP[m,n], x)    
1

2 2 2

1

2 2 3 2 1 8 x 1
n

m n i m

i

nmx n m n x i m n x




        

   m<n, Θ(VPHP[m,n], x)      
1

2 2 2

1

2 1 2 2 2 3 8 x 1
m

n m i m

i

n m x m n m x i m n x




         

Then the Theta index of VPHP[m,n] is 

   m≥n, Θ(VPHP[m,n]) =5nm
2
+12mn

2
- 8

3
n

3
-4n

2
-m

2+
8

3
n 

   m<n, Θ(VPHP[m,n]) =9nm
2
+4mn

2
- 8

3
m

3+
3m

2
-4n

2+
8

3
n 

 

Proof of Theorem 1. Let K=VPHP[m,n] be the V-Phenylenic Planar, with 6mn vertices and 9mn-2n-m edges. To 

compute the Theta polynomial of K, it is enough to calculate C(e) for every e in E(K). By using the result herein [7] 

and from Figures 1, one can see that there are four types of edges-cut of K We denote the corresponding edges-cut 

by 
iC (i=1,... Max{m,n}) and Ci (i=1,2,3). By definition of Theya polynomial and Tables 1 and 2, we have 

 

  m≥n: Θ(VPHP[m,n], x)=   m , , . .xc

c
VPHP m n c c  

     
1
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4 2 x 4 ( 1) 2 2 1 1
n
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Table 1: The number of co-distant edges, when m≥n. 

 

Type of edges-cut Number of co-distant edges No 

C1 2m n 

C2 m n-1 

C3 2n m-1 

iC  i=1,…,n-1 2i 4 

nC  2n 4(m-n+1) 

 

  m<n: Θ(VPHP[m,n], x)      
1

2 2 2 2

1

4 2 x 4 ( 1) 2 2 1 1
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Also,   m≥n:  

   1, , |xVPHP m n x 
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Table 2: The number of co-distant edges, when m<n. 

 

Type of edges-cut Number of co-distant edges No 

C1 2m n 

C2 m n-1 

C3 2n m-1 

iC  i=1,…,m-1 2i 4 

mC  2m 4(n-m+1) 

 

 

And also   m<n: 

Θ (VPHP[m,n])

     
1

2 2 2

1
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2 1 2 2 2 3 8 x 1

|

m
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Here the proof is completed.  

 

 

Figure 1: The 2-Dimetional Graph V-Phenylenic Nanotube K=VPHP[m,n]. 
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Theorem 2. Let G be the V-Phenylenic nanotube VPHX[m,n] ( , ),m n   Then the Theta polynomial of 

VPHX[m,n] is equal to: 

 

Θ(VPHX[m,n], x) =2mnx
2m

 +6mnx
2n

 +m(n-1)x
m 

 

And also the Theta index of VPHX[m,n] is equal to: 

 

Θ(VPHX[m,n]) =5nm
2
 +12mn

2
 +m

2
 

 

Proof of Theorem 2. Let G=VPHX[m,n] be the V-Phenylenic nanotube, with 6mn vertices and 9mn-m edges. From 

Figures 2 and by using the results in reference [7], it is east to see that there are four types of edges-cut in G. We 

denote the corresponding edges-cut by Ci (i=1,2,3) and C . By definition of Theya polynomial and Tables 3, one can 

see that 

 

Θ(VPHX[m,n], x)=   m , , . .xc

c
VPHX m n c c  

=2mnx
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 +m(n-1)x
m
+ 2mnx

2n
 +4mnx
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By definition of Theya index, we have 

Θ(VPHX[m,n])
  2 2

1

2 6 1
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2
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Table 3: The number of co-distant edges, when m≥n. 

 

Type of edges-cut Number of co-distant edges No 

C1 2m n 

C2 m n-1 

C3 2n m 

C  2n 2m 

 

and this completes the proof.■ 

 

 

Theorem 3. Consider the V-Phenylenic Nanotori H=VPHY[m,n] with 6mn vertices/atoms and 9mn edges/bonds for 

all integer number m,n. Theta polynomial and Theta index of H are equal to: 

Θ(VPHY[m,n], x)    
1

2 2 2

1

2 2 3 2 1 8 x 1
n

m n i m

i

nmx n m n x i m n x
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2
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Proof. From Figure 3 and Table 4, the proof is analogous to the above proofs.  

Θ(VPHY[m,n],x)=   , , . .xc

c
m VPHY m n c c  

=4mnx
2nm 
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Figure 2: The 2-Dimetional Graph V-Phenylenic Nanotube G=VPHX[m,n]. 

 

Table 4: The number of co-distant edges, when m≥n. 

 

Type of edges-cut Number of co-distant edges No 

C1 2m n 

C2 m n-1 

C3 2n m 

C  2nm 2 

 

 
Figure 3: The 2-Dimetional Graph V-Phenylenic Nanotube H=VPHY[m,n]. 
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